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ABSTRACT 

 
The goal this research is to develop an end-to-end data-driven system, dubbed TransDec 
(short for Transportation Decision-Making), to enable decision-making queries in 
transportation systems with dynamic, real-time and historical data. With TransDec, we 
particularly address the challenges in visualization, monitoring, querying and analysis of 
dynamic and large-scale spatiotemporal transportation data. TransDec fuses a variety of 
transportation related real-world spatiotemporal datasets including massive traffic sensor 
data, trajectory data, transportation network data, and points-of-interest data to create an 
immersive and realistic virtual model of a transportation system. Atop such a system, 
TransDec allows for processing a wide range of customized spatiotemporal queries 
efficiently and interactively. The successful implementation of the TransDec 
infrastructure in the previous stages of the project has facilitated the infrastructure and 
knowledgebase for two fundamental research lines. The first aims at devising an 
algorithm for compact and efficient data representation. Compact suggests that the data 
stored requires as little storage space as possible. The compactness of the data becomes a 
critical issue as the amount of data stored increases. Efficient representation means that, 
query times of the data are minimal and allow to work with the system in an interactive 
fashion. Then, exploiting the results of these lines of research, a new paradigm is 
presented. In this new storage paradigm the single point of storage, thus the single 
database server is traded for a cloud computing. This has many advantages, both in terms 
of storage scalability and maintenance and in terms of the availability of the data to all 
users as soon as it stored. We expect this new paradigm to dominate the research in geo-
spatiotemporal databases in the near future and believe that the seeds we present within 
this research will play a significant role in it.  
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1. Introduction 
Real-time data-driven framework of the transportation systems (i.e., a system driven 

by real data collected from the field) enables development of data-driven Intelligent 
Transportation Systems (ITS) for realistic and effective decision-making, planning, and 
management of the transportation systems. A data-driven ITS system must be able to 
handle various data types such as automatic vehicle location data (AVL), traffic 
congestion information, traffic incidents reports, road construction notices, driver 
information, CCTV video streams and snapshots, etc. Considering the large size of the 
transportation data, variety of the data (different modalities and resolutions), and frequent 
changes of the data, the integration, visualization, querying and analysis of such data for 
large-scale real-time systems are intrinsically challenging data management tasks. Due to 
these challenges, most of the current ITS applications only support limited data 
monitoring and analysis capabilities. Moreover, transportation researchers and policy 
developers, who mostly focus on developing algorithms and policies to enhance the 
efficacy of the transportation systems, often are restricted to simulation test-beds driven 
by synthetic or simplified data, and/or expensive and time-consuming field surveys to 
analyze the transportation systems and evaluate the proposed solutions.  

In this research, we present a data-driven framework, dubbed TransDec, which 
enables real-time visualization, monitoring, querying, and analysis of dynamic 
transportation systems. We build TransDec on top of a three-tier architecture 
(presentation tier, query-interface tier, and data tier) that allows users to create 
customized spatiotemporal queries through an interactive web-based map interface in 
support of decision-making. With this architecture, we particularly address the 
fundamental data management and visualization challenges in 1) effective handling of 
dynamic and large-scale transportation data, and 2) efficient processing of real-time and 
historical spatiotemporal queries on transportation networks. To evaluate TransDec, we 
utilize a rich set of real transportation data which we have obtain and archive from 
RIITS1 (Regional Integration of Intelligent Transportation Systems). The RIITS dataset 
[1] is collected by various organizations based in Los Angeles County including Caltrans 
D7, MTA-Metro, LADOT, and CHP. This dataset includes both inventory and real-time 
data (with update rate as high as every 1 minute) for freeway and arterial congestion, bus 
location, events, and CCTV snapshots. Moreover, in order to support diverse ITS 
applications, the TransDec data tier contains the transportation network of the entire US, 
as well as a wide variety of points-of-interest data provided by Navteq 2. 

In addition to offering realistic and immersive virtualization of the traffic 
information and moving assets (e.g., busses, trains) through a web-based application, 
TransDec allows decision makers to issue various real-time and historical spatiotemporal 
queries about a) traffic at specific segments or sensor stations (with any user-defined 
level of aggregation at any desired timeframe), and b) moving assets and their location-
based information.  

                                                
1 http://www.riits.net/ 
2 http://www.navteq.com/ 
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The successful implementation of the TransDec infrastructure in the previous stages 
of the project has facilitated the infrastructure and knowledgebase for two fundamental 
research lines. The first aims at devising an algorithm for compact and efficient data 
representation. Compact suggests that the data stored requires as little storage space as 
possible. The compactness of the data becomes a critical issue as the amount of data 
stored increases. Efficient representation means that, query times of the data are minimal 
and allow to work with the system in an interactive fashion. Then, exploiting the results 
of these lines of research, a new paradigm is presented. In this new storage paradigm the 
single point of storage, thus the single database server is traded for a cloud computing. 
This has many advantages, both in terms of storage scalability and maintenance and in 
terms of the availability of the data to all users as soon as it stored. We expect this new 
paradigm to dominate the research in geo-spatiotemporal databases in the near future and 
believe that the seeds we present within this research will play a significant role in it. 

The remainder of this report is organized as follows. The two following sections, 
Sections 2 and 3, review the related transportation monitoring and simulation systems 
and describe the system’s architecture. This facilitates the needed terminology and 
concepts that Section 4, which elaborate on the novel data representation methods, 
consists of. In Section 5, we introduce geospatial queries on a cloud decentralized storage 
system. Finally, we will conclude the report with conclusion and future work.  

2. Related Systems 
The latest developments in wireless technologies as well as the widespread usage of 

sensors have led to the recent prevalence of transportation network monitoring and 
simulation systems. The main functionality of such systems, in general, is to collect and 
archive data from distributed sensors and analyze the archived data for transportation 
applications such as planning and mobility measurement. Among the numerous 
transportation network monitoring and simulation systems that have been developed in 
the last decade, we review two of the most relevant systems, namely PeMS  [2] and 
ADMS  [3].  

The freeway Performance Evaluation Monitoring System (PeMS) developed by UC 
Berkeley collects and stores data from loop detectors operated by Caltrans. The main goal 
of PeMS is to convert this freeway sensor data into intuitive tables and graphs that show 
traffic patterns on highways. Moreover, PeMS is used to spot bottlenecks, measure the 
efficiency of highways, and estimate travel times for highway segments based on the 
historical travel time data. 

Similarly, ADMS developed by Smart Travel Lab in University of Virginia is a 
system which utilizes archived ITS data to provide information services to measure the 
performance and operation of Virginia transportation systems. ADMS, in addition to 
monitoring highways, enables users to query the database for real-time (and historical) 
weather and incident information for specific routes and segments.  

Our work is fundamentally different from the aforementioned systems in several 
ways. First, while the scope of these systems is limited to collection, archival and 
analysis of the sensor data, with TransDec we fuse the sensor data with various 
spatiotemporal data (e.g., transportation network data, moving object data, point of 
interest data) to be able to support end-to-end ITS applications more realistically. Second, 
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PeMS and ADMS, for analysis of huge datasets, use traditional Database Management 
System (DBMS) specific analytical query processing tools. DBMSs can only support a 
set of predefined analytical queries. However, with TransDec we utilize more 
sophisticated query processing techniques that allow for ad hoc and complex analytical 
queries as well. Finally, in addition to real-time traffic monitoring and analysis, TransDec 
enables various other real ITS applications such as real-time moving asset tracking, route 
planning and location-based querying.  

3. TRANSDEC Architecture 
TransDec adopts a three-tier architecture where presentation, query-interface, and 

data management tiers are logically separated. With the three-tier architecture of 
TransDec, the query is initialized at the presentation tier interactively and sent to the 
query-interface tier where each request is formulated as structured query language (SQL) 
before interacting with the data tier. Apart from the usual advantages of modular system 
with well defined interfaces, the three-tier architecture is intended to allow any of the 
three tiers to be upgraded or replaced independently as requirements or technology 
change. Figure 1 shows the three-tier architecture of TransDec. Below we elaborate on 
each tier in detail and describe the interaction between them.  

 

 
Figure 1. The TransDec architecture 

 

3.1. Presentation Tier 
One of the key distinguishing features of TransDec is the provision of an immersive 

environment that enables users to interact with the system and perform a wide range of 
ITS related spatiotemporal queries intuitively. The current graphical user interface (GUI) 
provides users with query flexibility by allowing them to query the spatiotemporal 
datasets based on a user-defined area and time interval. Specifically, users can selectively 
query and display different layers of information on desired regions, and move forward or 
backward in time for various query types. To implement the presentation tier, we have 
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integrated a new generation web-based map application, Google MapTM, into TransDec as 
graphical user interface. As a second choice, we have also developed our proprietary 
interface (termed Negaah) that provides custom spatiotemporal queries not supported by 
typical web-based mapping applications.  

The advantages of utilizing Google MapTM at the presentation tier are as follows: a) 
appealing and highly responsive visualization options, b) ability to zoom in and out to the 
desired scale and to pan to specific locations, c) flexible environment for as many layers 
of information as necessary to provide the level of detail required, and d) easy access 
through Internet via any browser (without any software or hardware installation). 
Additionally, given that Google MapTM is already ported to PDAs, porting TransDec to 
mobile computing devices is not a far-fetched future work. To support querying 
capability on mobile computing devices, we have a head start by studying multi-
resolution vector data compression techniques [4] that effectively compresses the result 
of query windows, taking into account the client’s display resolution.  

3.2. Query-Interface Tier 
With the query-interface tier, TransDec allows several independently developed 

GUIs to interact with our spatiotemporal data tier transparently. Our query-interface tier 
offers a universal standard for specifying the type of query (e.g., shortest path, range 
aggregate, etc.) and its parameters, as well as the returned results. Specifically, depending 
on the query type received from the GUIs, the query-interface tier constructs and sends 
the query to our data tier through low-level structured query language (SQL) commands 
for evaluation. In most cases, the query results are formulated into an industry standard 
XML3 file before sending to presentation tier. 

In addition, this tier includes a data fusion engine which continuously acquires 
sensor readings from RIITS web-services and stores them into our data repository. Data 
fusion engine utilizes WSDL4 (provided by RIITS) in combination with SOAP5 to 
retrieve the dynamic sensor data through a secure communication channel over the 
Internet.  

3.3. Data Tier  
The data repository of TransDec is a spatiotemporal database management system 

(STDBMS), namely Oracle 10g. STDBMS stores a variety of both dynamic (frequently 
changing) and static datasets such as highway sensor data, road network information (i.e., 
vector data), moving object trajectory data, point of interest data (e.g., hospitals, 
restaurants), terrain data, satellite and aerial imagery, and raster maps. Most of the data 
stored in the repository are labeled by both space and time to allow for a wide range of 
spatiotemporal (both time and space based) queries.  

                                                
3 http://www.w3.org/XML/   
4 http://www.w3.org/TR/wsdl  
5 http://www.w3.org/TR/soap/  
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In the data tier, our main focus is on developing index structures to answer 
spatiotemporal queries efficiently. Index structures are pre-computed data structures that 
are built off-line to speed up the evaluation of the queries issued on-line. Towards this 
end, in addition to incorporating numerous off-the-shelf indexing methods (e.g., R-Tree), 
we have introduced various versions of Voronoi Diagrams (VD) [5] as index structures 
for enabling efficient spatiotemporal querying on different types of data hosted in 
TransDec. The major data components of TransDec are as follows:  

3.3.1. Sensor Data 
TransDec, through RIITS, acquires traffic sensor data from approximately 6500 

sensors (covering approximately 2000 miles) located on highways and arterial streets at 
the boundaries of Los Angeles County. The arrival rate of the data from each sensor is 1 
reading/sensor/min. The storage space required for this streamed dataset is approximately 
850 MB/day. 

Each sensor is a separate data source that generates records with several attributes 
including sensor id, measure (value of reading), space (coordinates), and time 
(timestamp). The traffic measures captured by the sensors are speed, HOV speed, volume 
(number of vehicles) and occupancy (ratio of time vehicle is detected). Based on their 
spatial placement, we group the sensors as follows: a) individual sensors, b) spatially 
continuous sensors (segments), and c) spatially continuous segments (sections). Also, we 
consider the following time intervals to interact with the sensor data: a) a time 
point/range within a day, and b) day of week. These hierarchical categorizations with 
both space and time enables TransDec to process all roll-up and drill-down queries on 
traffic measures efficiently by navigating between various hierarchies of the time and 
space dimensions. For example, when computing the average speed at a network segment 
within five past Mondays from 08:00am to 08:30am, the weekend traffic data and 
unrelated segments can be discarded easily. 

3.3.2. Transportation Network Data 
TransDec contains a wide range of transportation network data (provided by Navteq 

™) including highways, major and secondary roads, streets, railroads, bridges, etc., for 
the entire US. Each network segment is represented in the vector data format and 
described by more than 20 attributes such as direction, speed limit, zip code, paved, etc. 
We utilize transportation network dataset primarily when processing route planning and 
location-based queries. 

3.3.3. Trajectory Data 
Another spatiotemporal dataset of TransDec consists of the trajectory information 

collected from moving objects whose location in the space changes over time. The 
position of a moving object is sampled at discrete times, and a series of straight lines 
connecting successive positions represents the trajectory of the object. Currently, 
TransDec collects live location data from GPS equipped USC trams and student cell 
phones (GeoSim, 2008). All time variant vehicle and cell phone coordinates are stored 
and archived in the data tier. 
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3.3.4. Points‐of‐Interest (POI) Data 
Point of interest data stored in TransDec (also provided by NavteqTM) includes list of 
public locations, such as bus satiations, parking structures, hospitals, restaurants, etc. 
Each POI data record is represented as spatial point location in the database and includes 
various attributes such as phone number, street address, type, etc.  

4. Spatiotemporal Summarization of Traffic Data Streams   
Efficient summarization and accurate reconstruction of the historic traffic sensory data, 
allows for smaller and efficiently manageable transportation data storage systems.  
Existing data summarization (and archival) techniques are generic and are not designed to 
leverage the unique characteristics of the traffic data for effective data reduction. In this 
section a family of data summaries that take advantage of the high temporal and spatial 
redundancy/correlation among sensor readings is introduced.  
 
In the past, different types of data reduction techniques have been widely used to reduce 
the size of the large sensor datasets. The prominent data reduction techniques are 
Wavelets [6], Single Value Decompositions (SVD) [7] and Principal Component 
Analysis (PCA) [8]. The main idea behind these techniques is to compactly store the 
main patterns in the data (i.e., sketches) in such a way that the dataset can be 
reconstructed back in its entirety from those patterns, with minimal loss of accuracy. 
Wavelets - a widely used technique in signal processing and image compression - 
compress large datasets by hierarchically decomposing the raw data and storing a small 
number of wavelet basis functions (i.e., wavelet coefficients) which best describe the 
data. Wavelets have been applied successfully in answering range-sum aggregate queries 
over data cubes [6], in selectivity estimation [9] and in approximate query processing 
[10,11,12]. Likewise, SVD and PCA represent a multivariate dataset using the smallest 
possible number of new variables (i.e., principal components) that are selected based on 
the statistical characteristics of the dataset. PCA reduce the size of the datasets by 
maintaining a sketch of archived historical data (i.e., small number of principal 
components and a transformed dataset).  However, the main difference is that although 
these compression techniques enable approximate query processing on the set of 
sketches, most of them do not guarantee any error bounds on the query results. 
Specifically, depending on the spatial and temporal extent of the query, the variation 
between the actual result and the approximated result can be unacceptable. In contrast, 
our approach ensure both an error bound and probabilistic guarantee on the results to the 
spatiotemporal queries. 
 
Another line of related work is data stream processing. In many streaming techniques, the 
structures similar with signatures (e.g., synopsis) are built online for real-time 
approximate query purposes, examples include equi-depth histograms and Haar wavelets 
[9,13], maintaining samples and simple statistics over sliding windows [14], data 
clustering and decision tree construction [15,16]. But most these research efforts focus on 
the application of online data monitoring rather than queries over historical dataset. 
Similarly, in some large streaming projects, queries over historical data streams do not 
receive much attention. In the area of sensor networks, such systems includes Aurora [17] 
which is designed for the purpose of managing data streams for monitoring applications 



 14 

and Telegraph [18] from UC Berkeley which focuses on creating adaptive engine over 
querying streaming data from sensors. However, for other streaming projects, such as 
Coguar [19] from Cornell University which considers sensor network as a distributed 
database system, STREAM [20] which serves as a general-purpose data stream 
management system as well as Niagara [21] which is designed for internet XML query 
processing, do concern the historical queries, but the type of their queries do not include 
spatial and temporal filters as the spatiotemporal query defined in this paper. 
 
For the data reduction in spatiotemporal domain, there have been several studies 
customized for specific types of spatiotemporal dataset. One of them is the work done by 
Cao et al. [22] on data reduction over trajectories of moving objects. They adopted line 
simplification approach from graphics field to reduce the storage size of trajectories. 
Unlike the traditional reduction technique, the line simplification based approach can 
guarantee a deterministic error bound, which is very similar with our error bounds 
structure. However, the approach of line-simplification aims at geographically simplify 
the presentation of individual moving objects trajectory, therefore heavily relies on the 
structure of trajectory data and not applicable on the traffic sensor data described in this 
paper. 

4.1. Problem Definition 
Our proposed approach builds on the observation that there is a strong correlation (both 
temporally and spatially) and redundancy present among the measurements of the single 
and multiple traffic sensor(s). For example, Figure 2(a) plots the average speed 
measurement from a single sensor located on I-10 East for two consecutive Mondays 
from 6 AM to 9 PM. As shown, both signals follow almost the same trend, and hence it is 
obvious that maintaining the two sets of measurements in their entirety is redundant. As 
another example, Figure (b) depicts a scatter plot of speed measurements (for Wednesday 
from 8 AM to 9 AM) from four different sensors, which are spatially close to each other 
on a segment of I-10 East. Similarly, there exists a strong correlation among the speed 
measurements of multiple sensors in spatial proximity. Given these observations, with 
our data summarization technique, we derive and maintain data signatures that represent 
typical patterns of the sensor readings that approximate the actual readings with bounded 
error. These data signatures, first enable us to store the streaming sensor data more 
efficiently by discarding the redundant sensor readings, and hence, provide cost effective 
data growth. Second, we can evaluate the spatiotemporal queries based on a small but 
informative summary of the sensor readings with sufficiently accurate results, rather than 
having to scan the entire datasets, which yields unacceptable response times. Specifically, 
with signature based approach, we only store the streaming data which falls outside of the 
signature (i.e., outlier) within a given error-bound; otherwise we discard the data since it 
is already represented by the signature. With our study, we use the large-scale traffic 
sensor dataset from the entire Los Angeles County highways for the past two years, 
collected by the TransDec system. Based on our experiments on this real dataset, we 
observe that our proposed approach can reduce the storage requirement up to 77% while 
maintaining high accuracy (with bounded-errors) on the query results. 
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(a) (b) 

Figure 2 - Examples of sensor readings 
 
In our study, we consider the readings collected from each sensor as a time-series with 
each reading observed by a sensor node at time t. Each sensor node is located on a road 
network segment. Each sensor reading contains multiple attributes (i.e., speed, volume 
and occupancy) describing the traffic behavior. In the rest of the discussion we will focus 
of the speed data. The speed value denotes the average speed during its sensor sampling 
time unit. The entire dataset, which contains all sensor speed readings collected in time 
interval [Ts, Te] is denoted by D. Our goal is to provide approximate results (with a 
bounded-error) to the queries that ask for the speed reading for a single sensor during 
time interval [ts, te]$, where (ts > Ts) and (te < Te). Note that other queries such as average 
query can be answered on top of this query defined here. 
 
Since we are interested in answering the spatiotemporal queries within a specified error-
bound, we define precision constraint which incorporates user specified precision 
parameters and enforces an approximate result to deviate from the exact result by (at 
most) ± error-bound ε with probability δ. 
 

Definition: Precision Constraint 
Let ε and δ denote relative error and probabilistic guarantee specified by 
users, respectively and let A and Y be the exact and approximate query 
result. The Precision Constraint states that the approximate result, Y, should 
hold a relative error of at most ε of the exact result A with probability of at 
least 1-δ: 

 
 

Equation 1 
 

4.2. Overview of Approach 
One way of answering spatiotemporal queries approximately is to capture the underlying 
patterns from the sensor readings and use them instead of the exact readings. Towards 
this end, we create a concise but reasonably accurate pattern of a sensor or a group of 
sensors called signature by averaging the sensor readings. Hence, given a spatiotemporal 
historical query, we can use the signatures to represent the results rather than scanning 
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the entire historical data. However, when the signatures are not sufficient to represent the 
exact sensor readings within precision constraint, we store the sensor readings that violate 
the constraint as outlier. We consider both signatures and outliers as the data summaries 
to answer the spatiotemporal queries. 
 
To further improve the storage efficiency, we explore temporal and spatial correlation in 
constructing data summaries based on the following observations. Like in most 
environmental monitoring sensor network deployments (e.g., pollution, temperature), the 
data generated by the traffic sensor nodes is highly auto correlated both in time and 
space. For example, the weekday readings from a specific traffic sensor usually follow a 
similar pattern. Similarly, the readings from multiple sensors located within a spatial 
proximity may also be strongly correlated, since the traffic flow hardly diverges or 
accumulates within a small spatial region, especially for the road segments with no 
exits/entries. These correlations can be captured accurately by constructing different 
types of data summaries from the historical data traces. 
 
We now explain the construction and maintenance steps of the data summaries shown in 
Figure 3. Our approach involves three phases. At the data analysis and query-processing 
phase, we use the historical data to pre-compute the signatures and their corresponding 
outliers to support historical spatiotemporal queries submitted by users.  At the data 
collection phase, we compare the incoming sensor readings to corresponding signatures 
to identify whether they violate the precision constraint. If precision constraint is 
violated, to avoid storing all such sensor readings, we conduct sampling among them 
with rate (1-δ) and only store the samples, otherwise, we discard the reading because we 
can use its signature value to represent it in the query processing. 
 

 
Figure 3 – Block Diagram f the System 

The summarization process’ result is presented in Figure 4, the solid line is the sensor’s 
signature and the dash lines indicate the error bounds of a sample signature. The crosses 
represent outliers that are outside of the error-bounds. Note that readings identified as 
outliers, are stored with probability of (1-δ).  
 
Accordingly, given a query, we not only utilize the signatures to provide approximate 
answers, but also incorporate the outliers when the signatures are not sufficient in 
satisfying the precision constraints. We argue that the combination of signatures and 
outliers can satisfy the precision constraints. The justification of our argument is as 
follows. For the query results (or part of it) from the outliers, they are 100 percent 
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accurate with no error, because we store the exact sensor reading as outlier. If the results 
are from signatures, based on the way we sample the outliers, there is (1-δ) probability 
that the exact result is within the error range ε. Hence, the combination of the results from 
signatures and outliers can guarantee the precision constraint. 

 
Figure 4 - Example of data summary 

4.3. Summarization Methods 
So far, we have formally defined the two components of data summaries: signatures and 
outliers. In this section, we explain our basic summarization technique.  In this technique, 
we compute the daily signature of a sensor by averaging all historical sensor readings 
from that sensor. We repeat this process for all sensors. For each sensor, comparing the 
sensor reading to the corresponding value in its signature S identifies the outliers.  Then, 
we examine vj(t) and Sj in the context of outlier definition to determine whether the 
reading is an outlier. 
 
Sensors’ signatures required storage is negligible with respect to the storage required for 
saving the entire data. However, if a signature is not representative enough (i.e., does not 
capture the typical patterns of its corresponding sensor), the storage needed to maintain 
the outliers can be high. We address this problem by maintaining several signatures for 
one sensor at different temporal and spatial scales. Meanwhile, we also aim to strike a 
compromise between the storage of signatures and outliers, and minimize the overall 
storage requirement of data summaries. Towards these ends, we propose two different 
data summarization techniques that exploit temporal and spatial correlations of the 
sensors.  

4.3.1. Temporal Summary 
In real-world road networks, the traffic patterns may show variations among different 
days within a week or even different seasons. We can accommodate for such diversities 
by using more than one signatures corresponding to different temporal scales. Trivially, 
increasing the number of signatures reduces the amount of storage needed by outliers. 
 
We explain our temporal summary technique using the example in Figure 5 where we 
focus on three levels of temporal summaries. The leftmost level indicates the method 
using single signature for each sensor as discussed in the basic summarization. At the 
second level, we increase the granularity of temporal summaries by providing seven 
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signatures with each one representing a unique day in the week. Each signature at this 
level is computed by averaging all the sensor readings collected on the corresponding 
day. For example, Wednesday’s signature of a sensor is the average of its sensor readings 
collected on Wednesdays in the historical dataset. At the third level, we increase the 
temporal granularity by introducing seasonal information. Based on each signature 
generated in the previous level, we derive three signatures with each one representing the 
sensor readings within a particular season.  In this level, we create a total of 21 signatures 
for each sensor characterizing the sensor readings at different temporal scales. 

 
Figure 5 - Different Levels of Temporal Summaries 

 
 

4.3.2. Spatial Summary 
We exploit the fact that the traffic sensors co-located within a spatial proximity report 
similar readings and behaviors. Therefore, the sensor readings between two adjacent 
entries/exits, or between two adjacent intersections may show similar values. Therefore, 
instead of maintaining one signature per sensor, we can compute one common signature 
for a group of sensors. Subsequently, with spatial summarization, we aim at eliminating 
the redundant signatures. 
 
We define two types of segments for spatial summaries that include groups of sensors, 
which have similar patterns: the segment between two adjacent exits/entries E-Segment 
and the segment between two adjacent intersections I-Segment. As illustrated in Figure 6 
in a typical road network, each E-Segment includes a small number of sensors, and each 
I-Segment includes several E-Segments, corresponding to a larger number of sensors. To 
compute the signatures for each segment, we first identify the set of sensors located in 
that. Next, we calculate the average of the sensor readings from all sensors in this group 
and use it as the common signature for each individual sensor located in that group.  
 

 
Figure 6 - Different Aggregation Level of Spatial Summaries 

4.4. Queries 
In this section, we introduce our proposed approach to answer spatiotemporal queries 
based on each type of data summaries.  Given a query, asking for sensor readings during 
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a particular time interval [ts,te] for a particular sensor i, we perform the following four 
steps to generate the answer: 
1. Partitioning the time interval [ts,te] into individual sensor sampling intervals (i.e., 

[tj,tj+T]), and initialize the empty result array to carry the result value for each 
sampling interval. 

2. For each interval [tj,tj+T], we extract date and time information, denoted as d' and t'.  
We use sensor_id i, d' and t' to search the database to check if any corresponding 
outlier stored. If we find such an outlier, we insert its value to the result array for 
interval [tj,tj+T] and skip the third step, otherwise, we continue with the third step. 

3.  The sensor id, i, is employed to search for its corresponding signature S. Then, we 
utilize t' to find the corresponding position (k) of S representing the interval [tj,tj+T] 
and insert Sk to the result. 

4. Finally, once we have gone through all the individual sensor sampling intervals in 
[ts,te], we return the result array as the approximate answer to the query. 

 
For the queries based on temporal or spatial summaries, we use the similar framework 
with a few changes in the third step. For temporal summaries, besides sensor id, i, we add 
date information d' from tj to search for the corresponding signature S. Since we maintain 
several signatures instead of one per sensor, we need to identify the particular one for tj 
by using d'. For spatial summaries, before searching for the signature, we identify the 
group ID of sensor i. Next, instead of sensor ID, we use group ID to find the group 
signature as the signature for sensor i in the third step. 

4.5. Experiments 
In our experiments, we use a large-scale and high resolution (both spatially and 
temporally) traffic sensor (i.e., loop detector) dataset collected from entire Los Angeles 
County highways. This dataset includes both inventory and real-time data for around 
1800 traffic sensors covering approximately 3000 miles. The sampling rate of the   
streaming data is 1 reading/sensor/min. To evaluate the storage efficiency, we compare 
our summarization techniques with a baseline solution, which stores entire historical 
sensor readings.  In the first two sets of experiments, we vary two precision constraint 
parameters: error range ε and probabilistic guarantee rate δ by comparing the storage 
requirement of the baseline approach, with our techniques using different summary 
strategies (i.e., temporal and spatial summaries). When varying one parameter, we set the 
value of the other one to 10%. In the third set of experiments, we fix the precision 
constraint (i.e., both ε and δ are set to 10 %), and compare the different combinations of 
our two summarization techniques in storage efficiency and signature size.  The 
performance is measured as the storage requirement of each technique. For all the 
experiments, we use a PC running Windows with Intel 6420 Dual CPU 2.13G and 3.0 
GB RAM. 

4.5.1. Temporal Summaries 
First, we compare the baseline approach (B), the basic summarization (BS) technique and 
two temporal summarization techniques based on two temporal scales: Weekday (W), 
Seasonally Weekday (SW). For SW, we define three seasons: spring, summer, fall with 
each one covering four months of the year, Jan-Apr, May-Aug, Sep-Dec, respectively. 
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Figure 7 shows that as ε and δ increase the overall storage requirement of our 
summarization techniques based on different temporal correlations decrease sharply as 
compared to the baseline approach. For the effect of ε and δ, we observe that as ε 
increase, we hold an increasing reduction rate on storage requirement. Specifically, when 
ε increases to 10, the storage requirement of our system is reduced by nearly 75% as 
compared to the baseline approach. As ε increase to 20, the reduction reaches 80% to 
85% percent.   This indicates that about 75% to 85% of the entire sensor readings are 
distributed within a small error range of the signatures. For δ, the storage size decreases 
linearly as δ increases. The reason is that we sample the outliers to store, so the storage 
size is proportional to the sampling rate. In general, the higher the temporal scales, the 
more signatures are stored, hence resulting in less number of outliers as shown in Figure 
Figure 7. From approach BS to W, the decrease in storage requirement is noticeable, but 
from W to SW, the two lines nearly overlap with each other, which indicates the amount 
of storage saving is negligible. One reason is that the traffic sensor readings hardly 
change across different seasons in Los Angeles. Figure 8 shows the size of signatures for 
SW is two times higher than that of W. In conclusion, to make a trade-off between the 
number of signatures and the storage efficiency, the temporal summary by weekday 
signatures is the proper temporal summarization approach to choose in Los Angeles. 

  
(a) Effect of ε (b) Effect of δ 

Figure 7 - The overall storage size for temporal summaries 
 

  
(a) Temporal Summaries (b) Spatial Summaries 

Figure 8 - The signatures size for different summaries 
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4.5.2. Performance of Spatial Summaries 
We compare here the baseline approach (B) and basic summarization (BS) with two 
spatial summaries designed for sensors within an E-Segment (ES), and within an I-
Segment (IS). 
As shown in Figure Figure 9, the impacts of ε and δ are similar to those previous 
experiments. When we increase the spatial aggregation level by grouping sensors 
according to different size of segments (in our dataset, I-Segments are longer than E-
Segments), the overall representation capability of each group signature for individual 
sensor is reduced; therefore the number of outliers increases. In particular, comparing IS 
with BS in both Figure 8 and Figure 7(b), although the signature size of IS is reduced 
significantly as compared that of BS, IS shows a sharp increase of outliers. One possible 
reason for that is the sensor readings generally fluctuate a lot within two adjacent 
intersections. We observe that both BS and ES require similar storage capacity in most 
cases, which means that sensors located between two exits mostly maintain similar speed 
readings hence the amount of outliers does not increase significantly. Moreover, the 
signature size of ES is smaller than that of BS. Hence, the ES based spatial 
summarization technique was the best one in this set of experiments. 

  
(a) Effect of ε (b) Effect of δ 

Figure 9 - The overall storage size for spatial summaries 

4.5.3. Performance of Spatial & Temporal Summaries 
With our previous two experiments, we fixed one type of summarization technique at one 
time to examine the effect of others. In our third set of experiments, we vary both the 
spatial and temporal summarization technique simultaneously to identify the optimal 
combination for our system. With this set of experiments, the same notation as in the last 
two experiments is used, (e.g., W+ES indicates the combination of week day 
summarization and E-Segment summarization). We fix both ε and δ to 10%. 
 
Figure 10 shows the comparison of the seven combinations for overall storage size and 
signature size. As shown, although IS methods is useful in decreasing the amount of 
signatures significantly, it sacrifices the overall storage size because of the increasing 
number of outliers, so it cannot be considered as a part of the optimal choices. When 
comparing the performance of techniques including W and the ones including SW, the 
storage size does not change much, but the signature sizes of the ones with SW are much 
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larger than that of the ones with W. Therefore, we should also exclude SW technique 
from our optimal choices. Now, let us compare the remaining three choices: BS, W and 
W+ES. As shown, W and W+ES requires similar storage requirement that is much less 
than that of BS. Hence, we eliminate BS.  But W+ES performs better by maintaining less 
signatures as compared to W. Hence, W+ES is the optimal solution for our system. By 
comparing the overall storage size of W+ES with that of the baseline approach shown in 
previous experiments, we observe that the storage requirement of our system as 
decreased by 77% percent of the baseline approach with ε=10% and δ=10%. 
 

  
(a) Overall Storage Size (b) signature Size Only 

Figure 10 - The performance of temporal & spatial summaries 

5. Distributed data management algorithms  

5.1. Introduction 
With the recent advances in location-based services, the amount of geospatial data is 
rapidly growing. Geospatial queries (nearest neighbor queries and reverse nearest 
neighbor queries) are computationally complex problems which are time consuming to 
solve, especially with large datasets. On the other hand, we observe that a large variety of 
geospatial queries are intrinsically parallelizable. 
 
Cloud computing implies a considerable reduction in operational expenses by providing 
flexible resources that can instantaneously scale up and down. The annual global market 
for cloud computing is estimated to surpass $100 billion in three years [23]. Thus, the big 
IT vendors including Google, Microsoft, IBM and Amazon are ramping up parallel 
programming infrastructures. Google’s MapReduce programming model [24] provides a 
parallelization for processing large datasets and can do at a very large scale. For example, 
Google processes 20 petabytes of data per day with MapReduce [25]. Given recent 
availability of cloud services and intrinsic parallel nature of geospatial queries, a variety 
of geospatial queries can be efficiently modeled using MapReduce. Suppose we want to 
answer a reverse nearest neighbor query (RNN). Given a query point q and a set of data 
points P, RNN query retrieves all the data points that have q as their nearest neighbors 
[26]. Each point pi finds its nearest neighbor pk efficiently in parallel and emits <pk, pi> in 
the map phase. Subsequently, all points having the same key, pk will be grouped in the 
reduce phase by indetifying pk’s RNNs without any extra step. 
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Parallel spatial query processing has been studied in the contexts of parallel databases, 
cluster systems, and peer to peer systems as well as cloud platforms. We propose a 
MapReduce-based approach that both constructs a flat spatial index, Voronoi diagram 
(VD), and enables efficient processing of wide range of spatial queries including reverse 
nearest neighbor (RNN), maximum reverse nearest neighbor (MaxRNN) and k nearest 
neighbor (kNN) queries. These types of queries are widely used in decision support 
systems, profile-based marketing, bioinformatics and geographical information systems. 
For example, RNN query can help a franchise (e.g. Starbucks) decide where to put a new 
store in order to maximize the benefit to its customers. The experiments show that our 
approach scales well with the increasing number of nodes. For example, a VD can be 
generated by merging partial Voronoi Diagrams (PVD). Specifically, each mapper 
creates a PVD and a reducer combines all the PVDs to obtain a single VD. Clearly, 
dividing the most computationally complex piece of the algorithm, namely construction 
of PVDs, across multiple mappers improves the performance. To the best of our 
knowledge, our work is the first detailed attempt in processing geospatial queries with 
MapReduce in the cloud-computing context. This work was presented in the last IEEE 
conference on cloud-computing and was awarded with the best paper award [27]. Before 
we present our geospatial query processing approach, in this section we briefly introduce 
Voronoi Diagrams and MapReduce to prepare for the rest of the discussion. 

5.1.1. Voronoi diagrams 
A Voronoi diagram decomposes a space into disjoint polygons based on the set of 
generators (i.e., data points). Given a set of generators S in the Euclidean space, Voronoi 
diagram associates all locations in the plane to their closest generator. Each generator s 
has a Voronoi polygon consisting of all points closer to s than to any other site. Hence, 
the nearest neighbor of any query point inside a Voronoi polygon is the generator of that 
polygon. The set of Voronoi polygons associated with all the generators is called the 
Voronoi diagram (VD) with respect to the generators set. The polygons are mutually 
exclusive except for their boundaries. 

 
Figure 11 - A sample Voronoi diagram 

 
Figure 11 illustrates an example of a Voronoi diagram and its polygons for nine 
generators. Various approaches have been proposed to generate VD in Euclidean space. 
We use divide and conquer approach to efficiently compute VD [28].  
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5.1.2. MapReduce 
MapReduce is a popular programming model for parallel processing of large datasets. 
Programs written with this model are automatically parallelized and executed on 
thousands of commodity machines, collectively referred to as a cluster. Since it is a 
simple but yet a powerful model, it has been used in a wide variety of application 
domains such as machine learning, data mining and search-engines.  
 
Hadoop is a popular open source implementation of the MapReduce, which runs on top 
of a distributed storage system called Hadoop File System (HDFS). In HDFS, a file is 
broken into multiple blocks, called split, which are then distributed among the machines 
in the cluster. All splits are of the same size with the exception of the last one, and the 
split size is configurable per file. MapReduce consists of two user-defined functions, 
namely a map function and a reduce function. Given a MapReduce task, with Hadoop 
first each mapper is assigned to one or more splits depending on the number of machines 
in the cluster. Second, each mapper reads inputs provided as a <key, value> pair at a 
time, applies the map function to it and generates intermediate <key,value> pairs as the 
output. Finally, reducers fetch the output of the mappers and merge all of the intermediate 
values that share the same intermediate key, process them together and generate the final 
output. The input of mappers and the output of reducers are stored on HDFS. Figure 12 
shows how Hadoop processes the data of four split in parallel where there are three map 
machines and two reduce machines. 

 
Figure 12 - The data flow in Hadoop Architecture 

5.2. Constructing Voronoi Diagram with MapReduce 
Voronoi Diagram construction is inherently suitable for MapReduce modeling because a 
VD can be obtained by merging multiple partial Voronoi diagrams (PVD). Specifically, 
each of PVDs can be created by the mappers in parallel and the reducer can combine 
them into a single VD. In this section, we show how a VD is built with MapReduce using 
divide and conquer method. 
 
One of the techniques used to generate a Voronoi diagram is divide and conquer 
paradigm. The main idea behind the divide and conquer method is as follows. Given a set 
of data points P as an input in Euclidean space, first the points are sorted in increasing 
order by X coordinate. Next P is separated into several subsets of equal size. 
Subsequently, a PVD is generated for the points of each subset, and then all of the PVDs 
are merged to obtain the final VD for P. 
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MapReduce Solution: Given a set of data points sorted by X coordinate, each mapper 
reads an input split in the format of <data_point, dummy_value> (i.e., <key, value> pair). 
Note that the dummy_value does not have any purpose, i.e., it is used to follow the input 
format of MapReduce. Subsequently, each mapper generates a PVD for the data points in 
its split, marks the boundary polygons to be later used in the merge phase and emits the 
generated PVDs in the form of <constant_key, PVDi> where i denotes the split number. 
The constant_key is common to all PVDs, so that all PVDs can be grouped together and 
merged in the subsequent reduce step.  

 
Figure 13- a) Merger of left and right PVDs b) A Voronoi diagram distributed on HDFS which will 

read by the mappers as input 
  
Finally, a single reducer aggregates all PVDs in the same group and combines them into a 
single VD. In the merger phase, the boundary cells are detected first with a sequential 
scan, and then new Voronoi edges and vertices are generated by deleting superfluous 
boundary portions from PVDs. As the final output, the reducer emits each point and its 
Voronoi neighbors (VN). 
 
Figure 13a illustrates parallel VD generation with two mappers and one reducer. Given a 
set of data points P= {p1, p2,…,p13, p14} as input, first the points are sorted, then they are 
divided into two splits equal in size. The first mapper reads the data points in Split 1, 
generates a PVD and emits <1, PVD1)>. The key value “1” is constant for all mappers. 
Likewise the second mapper emits <1, PVD2>. Next the reducer aggregates these PVDs 
and merges them into a single VD. The final output of the reducer is in the following 
<key, value> format: <pi, VNs(pi)> where VNs(pi) represents the set of  Voronoi 
neighbors of pi. For example, for point p1 the output is < p1, VN(p1)={p2, p3, p4 }> and for 
point p14 the output is < p14, VN(p14)={ p10, p11, p13}>. Analogously, a <key, value> pair 
is generated for each data point.  
 



 26 

Once the reducer outputs the result, the output is also split into multiple blocks and 
scattered across the machines in the cluster to prepare for query processing.  Suppose the 
output is divided into two equally sized splits. Consequently, the first split will contain 
the Voronoi polygons of {p1,..., p7} and the second will include those of {p8,…, p14}. 
Figure 13b shows how the generated VD is stored on HDFS. 

5.3. Query processing 
In this section, we discuss our proposed MapReduce-based approaches to answer a 
variety of spatial queries using Voronoi diagrams. For each query type, we first define the 
problem and then discuss our approach. 

5.3.1. Reverse Nearest Neighbor Query (RNN) 
Given a query point q and set of data points P, reverse nearest neighbor (RNN) query 
retrieves all data points p  P that have q as their nearest neighbors. There are two cases 
of RNN queries, namely, monochromatic RNN and bichromatic RNN. We focus on 
monochromatic RNN (MRNN) which has been extensively studied in spatial databases 
[29]. With MRNN, all objects are of the same type. Therefore, a point p is considered an 
RNN of q if there is no other point pʹ where d (p, pʹ) ≤ d (p, q). RNN query has been used 
in a wide range of applciations such as decision support systems,  profile-based 
marketing, bioinformatics, and optimal location. For example, McDonald’s has a 
marketing application in which the issue is to determine the business impact of 
restaurants to each other. A simple task would be to determine the customers who would 
be likely to use restaurants.  
 
Figure 14 illustrates the computation of reverse nearest neighbor for a given set of data 
points in 2D space where each data point is considered a query point as well. The search 
expands from each point pi simultaneously until pk, the point closest to pi, is found. 
Performing this task for each point pi results in a circle centered at pi with a radius |pi, pk|. 
Therefore, the nearest neighbor to each point lies on the perimeter of its corresponding 
circle. Given that pk is pi’s nearest neighbor, pk’s reverse nearest neighbor includes pi and 
possibly other points whose nearest neighbors are pk as well. For example, p5 is the 
nearest neighbors of p2, p3 and p4 in Figure 14; therefore, p5’s RNNs are p2, p3 and p4. 

 
Figure 14 - The reverse nearest neighbor query 

 
MapReduce Solution: The RNN problem defined above is intrinsically applicable to 
MapReduce. Given that each mapping operation is independent of the others and all maps 
can be performed in parallel, first each point pi finds its nearest neighbor pk efficiently 
and emits <pk, pi> in the map phase. Next, all points having the same key, pk will be 
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grouped in the reduce phase by indetifying pk’s RNNs without any extra step. The 
detailed map and reduce steps for processing an RNN query is as follows. Suppose the 
input to the map function is:     
     <p, Voronoi Neighbors (VNs)>,  
Map: Each point pi finds pk as its nearest neighbor. Recall that the nearest neighbor of a 
point lies within its VNs (see Property 4) and on average the number of VNs cannot 
exceed 6 (see Property 3). Therefore, in order to find the nearest neighbor we need to 
check only 6 points on average. Once pk is found, the mapper emits the pair <pk, pi>, 
which states that pk‘s reverse nearest neighbors include pi.  
Reduce: The reducer aggregates all pairs with the same key pk (i.e., the result of each 
nearest neighbor search) and emits a set <pk1, pk2,…,pkm>, which contains all points pij 
0<j<m+1 whose nearest neighbor is pk.  
 
For example, p2, p3 and p4 all have p5 as their nearest neighbor in Figure 14. In the map 
phase, these points will locate p5 as the nearest neighbor and emit the <key, value> pairs: 
<p5, p2>, <p5, p3>, <p5, p4>, respectively. Then in the reduce phase, every point with the 
same key, p5 will be aggregated as <p5, {p2, p3, p4}>. This group forms the RNNs of p5. 

5.3.2. Maximizing Reverse Nearest Neighbor (MaxRNN) 
A MaxRNN query [30] locates the optimal region A such that when a new point p is 
inserted in A, the number of RNNs for p is maximized. This query is known optimal 
location problem as well. The optimal region can be found using nearest neighbor circles. 

DEFINITION 1 Nearest Neighbor Circle (NNC) 
Given a point p and its nearest neighbor pʹ, NNC of p is the circle centered at pʹ with 
radius |p, pʹ|. 

 
Figure 15 - Overlapping NNCs 

 
Given a set of data points P, each point pi finds its nearest neighbor pk, and computes an 
NNC based on pk. The region which is intersected by the highest number of NNCs is the 
answer to MaxRNN query. Figure 15a shows an example of MaxRNN with three points 
{p1, p2, p3}. The nearest neighbors of p1, p2 and p3 are p3, p1 and p1, respectively. The 
boundaries of NNCs decompose the space into disjoint regions labeled as A, B, C, D, E, 
F, G and H. As shown in Figure 15b, region A, the overlapping region of all circles, is 
maximizing the size of RNN for the new point and is represented by a set of intersection 
points of NNCs which are covered by the maximum number of circles, i.e. {i1, i2, i3}.  
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MapReduce Solution: The main motivation behind parallelizing a MaxRNN query with 
MapReduce is that MaxRNN queries need to process large datasets in its entirety which 
may result in an unreasonable response time. For example, in a recent study it has been 
showed that the computation of a MaxRNN query with 200,000 points takes several 
hours. Whereas, our MapReduce-based approach can answer the same query in a few 
minutes with 32 nodes and the performance can be improved as more nodes join the 
cluster. 
 
With our approach, we compute a MaxRNN query in two MapReduce steps where the 
output of each step is given to the following step as input. First step finds the nearest 
neighbors of every point and computes the radiuses of the NNCs. The second step finds 
the intersection points that represent the optimal region. The detailed map and reduce 
steps are as follows. Suppose the input to the map function is in the following form: 
     <p, Voronoi Neighbors (VNs)>, . 
Step 1: Each point p finds pʹ as its nearest neighbor among the VNs, and sets |p, pʹ| as the 
radius r of its NNC. Subsequently, for each point pvn in the VNs of p, <pvn, {p, r}> (i.e. 
<key, value>) is emitted as the intermediate output by the mappers. Subsequently, the 
reducers aggregate the intermediate output, such that for every p and its VNs a radius 
value is set. The final output of the reduce phase is as follows.  
<(p, r), {Voronoi Neighbors with radius of their NNCs}>,  
Step 2: First, each point p checks its VNs in order to find the NNCs with which it 
overlaps using the radius values computed in the first step. Two circles centered at p1 and 
p2 with radiuses r1 and r2 overlap if |p1, p2| < r1 + r2.          

 
Figure 16 - MaxRNN computation 

 
We expand our search to neighbors’ neighbors in stages as follows. For each point pvn in 
the VNs of p, the mappers emit <pvn, {VNs - pvn}> as output. Then the reducers receive 
the input from the mappers and emit it as is. This expansion is repeated until all 
overlapping NNCs are found for every point p. Once the expansion is terminated, the 
mappers compute the intersection points. 
 
Subsequently, we count the number of NNCs covering each of the intersection points to 
identify the weights. An intersection point i can only be covered by the NNCs which 
overlap the NNC on which i exists.  Since we have already found all NNCs at the end of 
the expansion phase, we find the weights of each i and emit <contant_key, (i, w(i))>  
pairs as output of the map phase where w(i) represents the weight of the intersection point 
i. At the concluding reduce step, all intersection points are grouped together since they 
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have the same constant_key, and then the highest weigthed intersection points are found 
and emitted as the final output.  
 
Figure 16 shows NNCs and the underlying Voronoi polygons with three data points. At 
the first step, p1 finds p3 as the nearest neighbor among its VNs {p2, p3} and sets |p1, p3| as 
the radius of its NNC. The final output of the first MapReduce step for p1 is <(p1, |p1, p3|), 
{(p2, r2), (p3, r3)}>. In the map phase of the second step, p1 checks its VNs {p2, p3}, finds 
that it overlaps {p2, p3} and computes the intersection points {i2, i3, i5, i6}.  The search for 
p1 can expand to neighbors’ neighbors, namely neighbors of {p2, p3}; however, for the 
sake of clarity we do not demonstrate the expansion phase. Each intersection point i then 
computes its weight by counting the NNCs covering i. For example, i2 is covered by the 
NNCs of {p1, p2, p2}, and w(i2)=3. For each intersection point i, the second map phase 
emits <1, (i, w(i))> pairs, i.e., <1, (i2, 3)>, <1, (i3, 3)>, <1, (i5, 2)>, and <1, (i6, 2>. The 
final reduce phase combines all pairs, finds the intersection points with the heighest 
weights who are emitted as the final output, i.e. { i1, i2, i3}. 

5.3.3. k Nearest Neighbor Query (kNN) 
Given a query point q and a set of data points P, k Nearest Neighbor (kNN) query finds 
the k closest data points pi P to q where d(q, pi) ≤ d(q, p).  Voronoi diagram  has been 
showed to be an efficient method to solve kNN problem [31]. The first NN is found by 
locating q into corresponding Voronoi polygon (VP). The second NN to any location 
inside a Voronoi polygon VP (pi) is among the VNs of pi .  

MapReduce Solution: We address kNN problem with one MapReduce step if all NNs of 
q are in the same split. Additional steps might be required for some query points which 
have NNs in more than one split. The map and reduce steps are discussed below. Suppose 
the input to the map function is as follows: 
     <p, Voronoi Neighbors (VNs)>,  
Map: Suppose we answer a 3NN query with two mappers and one reducer for query 
point q1 in Figure 17. First, each mapper reads its split. All data points in the split are put 
in a hash map where each point is a key and VNs are values. Subsequently, the point p1, 
the first NN, is found where q1 is inside VP (p1). Notice that only one split can have the 
VP(p1) and only one mapper processing that split can locate q. The second mapper can 
simultaneously process the query point q2 and other queries as well. Clearly, processing a 
batch of query points simultaneosuly improves the throughput considerably. However, 
for simplicity, we will move on the discussion assuming that there is only one query 
point. The second NN is among the VNs of p1, {p2, p3, p4, p5, p6, p7, p8}. Suppose the 
second NN is p2. The third NN is among the VNs of {p1, p2}. The VNs of p1 are already 
known. The neighbors of p2 are efficiently found by using the hash map. A distance from 
q to every point in the set of VNs is calculated and the point with the minimum distance is 
found as the third NN, i.e., {p5}. Once all the neighbors are found, the mapper emits the 
query point q as key and the neighbor list as value, i.e., <q1, {p1, p2, p5}>. In some cases, 
a query point can be close to the boundary of a split (see q3 in Figure 17) and some of its 
nearest neighbors can be in the neighboring split. In order to handle this case, when a 
point is found as a nearest neighbor, we check each of its VNs in the hash map if they are 
in the current split. If not, we flag the missing points and reprocess them in an additional 
MapReduce step as described below. 
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Reduce: Receives the query point as key and its neighbors as value, and emits as they 
are.  
 
After the reduce step, the final output is checked if the query contains any flagged point. 
If some of the neighbors are in an another split, an aditional MapReduce step is required. 
In the second map phase of such a case, the query comes with its current kNNs and 
flagged points. The flagged points are located in the Voronoi diagram and the new 
candidate points are found. Next, the new set of kNNs is selected among the current 
kNNs and the candidate set. Finally, the mapper emits the new result. 

 
Figure 17 - visualization of processing multiple kNN queries on Hadoop 

 

5.4. Performance Evaluation 

5.4.1. Setup 
With our experiments, we used two real Navteq datasets that consist of all financial 
institutions (FIN), auto services (AUT), restaurants (RES), other businesses (BSN) in the 
entire U.S., containing approximately 190000, 250000, 450000 and 1300000 data points, 
respectively. With these datasets, we evaluated the performance of our proposed 
techniques and correspondingly compared them with their closest related work while 
varying the number of employed nodes in the cluster.  
 
We conducted our experiments on the Amazon EC2 cluster with extra large instances that 
run on 64 bit Fedora 8 Linux Operating System with  15 GB memory, 4 virtual cores, and 
4 disks with 1,690 GB storage.  The I/O performance of EC2 varies from 40 MB/s to 140 
MB/s during a day depending on the hour [32]. In order to obtain consistent results, we 
conducted all experiments in off-peak hours. All experiments are implemented using 
Hadoop version 0.20.1. The configuration of Hadoop can considerably influence the 
performance of the query processing techniques. Accordingly, we performed all of our 
experiments with the same setup, where the replication factor of each file is set to 1 in 
order to avoid writing overhead and to enable compression of the data transferred 
between mappers and reducers.  Moreover, each node runs two map instances and one 
reduce instance. 

5.4.2. Results 
In this experiment, we compared the performance of our proposed indexing approach 
(VD) with the MapReduce-based R-tree [33] in terms of index construction time and 
query response time. Figure 18a illustrates the effect of varying the number of nodes in 
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the cluster on the construction time of VD and R-tree, given the RES dataset. As shown, 
the construction times of both index structures decrease almost linearly as more 
parallelism is induced by the new nodes. Construction of the R-tree index takes less time 
than that of VD. This is because the mappers generating PVDs execute expensive 
computations and there is only one reducer merging the PVDs in the cluster. Figure 18b 
depicts a similar observation with the BSN dataset.  Even though R-Tree is faster to 
build, our experiments show that VD outperforms R-tree in query response time. Figure 
18c and d depict the time to compute the nearest neighbor (as an example query) for 
every point in the RES and BSN datasets, respectively. As shown, in both cases VD is at 
least five times faster than R-tree and R-tree does not scale well. This is because with 
VD, points can immediatelly find their nearest neighbors in their VNs in the map phase; 
however, R-tree does not guarantee that nearest neighbor of a point p is in the same split 
with p. Thus, with R-tree a reducer always verifies the answer. 

 

 
Figure 18 - ab) VD & R-tree construction cd) NN query on VD & R-tree 

 
In this experiment, we study the impact of varying the number of nodes as well as size of 
the datasets on average response time of our proposed RNN query processing technique. 
Our approach processes RNN query for every data point simultaneously rather than a 
single data point. Figure 19a shows the average response time of processing a reverse 
nearest neighbor query for every data point on a single node without parallelism. As 
shown, the average response time slightly decreases with the increasing number of data 
points; hence, the overall  throughput increases. With the state-of-the-art centeralized 
approach, FITCH [34], an RNN query for a single data point runs in a few seconds given 
a similar dataset in size with RES. Clearly, processing an RNN query for all the data 
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points in a dataset decreases the average response time by several orders of magnitude.  
Figure 19b illustrates the effect of node number on the average response time of 
processing an RNN query for BSN and RES datasets. As shown, the response time 
decreases linearly as more nodes join the cluster. 

 
      Figure 19 - Effect of node number on RNN 

 
In this experiment,we study the performance of our proposed technique for MaxRNN 
query answering by varying node numbers with both BSN and RES datasets. We 
compare our Voronoi based approach with the best-known centeralized algorithm, 
MaxOverlap[30], which uses R-tree index structure. Both approaches implement the 
same algorithm with different data structures; therefore, the performance on a single 
machine without parallelism is similar for both. However, our approach is parallelizable 
and shows linear scalability in response time utilizing VD. Figure 20 illustrates the 
execution time with varying node numbers and datasets. As shown, parallelization 
reduces the response time at linear rate for both datasets. As the number of nodes 
doubles, we observe a performance increase from %30 up to %50.  

 
Figure 20 - Effect of node number on MaxRNN 

 
In this experiment, we compare our approach (VD) with the existing MapReduce based 
kNN search (MRK) [35] in terms of response time. We study the impact of k and query 
cardinality on response time. Figure 21a presents the response of kNN queries (with BSN 
dataset) processed on a single node for varying k. As shown, VD outperforms MRK 
significantly. This is because, for a given number of data points P and given number of 
query points Q, MRK always outputs P×Q <key,value> pairs in the map phase 
independent of k. Due to the massive amount of data generated by the mappers, the 



 33 

response time is high. The effect of k is not a substantial factor for VD as long as all 
nearest neighbors of a query point is in the same split. Otherwise, additional MapReduce 
steps might be required. Thus,  for larger k values, the chance of having nearest neighbors 
in more than one split is also higher. Figure 21b shows the impact of query cardinality 
with uniform distribution on response time. MRK does not scale with the increasing 
number of queries due to the same reason discussed above. As more queries are 
processed simultaneously using VD, the throughput increases. This is because, before the 
queries are processed, the entire data is already fetched into the memory. 
 

 
Figure 21 - kNN 

 

 

6. Conclusion and Future Work 
In this research, we developed a data-driven end-to-end decision making system, 
TransDec, that enables interactive and extensive querying of transportation related 
spatiotemporal datasets including traffic sensor data, trajectory data, transportation 
network data, and points-of-interest data. Particularly, we explained the design \of 
TransDec’s architecture. We also introduced a set of advanced data representation and 
spatiotemporal queries supported by TransDec. We elaborated on the challenges with 
each line of research and presented our solution in each case.   
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